Modifier and Type | Method | Description |
---|---|---|
Num |
Curve.f(Num x) |
|
Num |
LinearSegment.f(Num x) |
|
Num |
Curve.f_inv(Num y) |
|
Num |
Curve.f_inv(Num y,
boolean rightmost) |
|
Num |
Curve.fLimitRight(Num x) |
|
Num |
Curve.getBurst() |
|
Num |
LinearSegment.getGrad() |
|
Num |
Curve.getGradientLimitRight(Num x) |
|
Num |
Curve.getLatency() |
|
static Num |
CurvePwAffine.getMaxHorizontalDeviation(CurvePwAffine c1,
CurvePwAffine c2) |
Returns the maximum horizontal deviation between the given two curves.
|
static Num |
CurvePwAffine.getMaxVerticalDeviation(CurvePwAffine c1,
CurvePwAffine c2) |
Returns the maximum vertical deviation between the given two curves.
|
Num |
CurvePwAffine.getUltAffineRate() |
|
Num |
LinearSegment.getX() |
|
static Num |
CurvePwAffine.getXIntersection(CurvePwAffine curve1,
CurvePwAffine curve2) |
|
Num |
LinearSegment.getXIntersectionWith(LinearSegment other) |
|
Num |
LinearSegment.getY() |
Modifier and Type | Method | Description |
---|---|---|
static java.util.ArrayList<Num> |
CurvePwAffine.computeInflectionPointsX(CurvePwAffine c1,
CurvePwAffine c2) |
Returns an
ArrayList instance of those x-coordinates at which
either c1 or c2 or both have an inflection point. |
static java.util.ArrayList<Num> |
CurvePwAffine.computeInflectionPointsY(CurvePwAffine c1,
CurvePwAffine c2) |
Returns an
ArrayList instance of those y-coordinates at which
either c1 or c2 or both have an inflection point. |
Modifier and Type | Method | Description |
---|---|---|
static ArrivalCurve |
CurvePwAffine.add(ArrivalCurve arrival_curve_1,
Num dy) |
|
static CurvePwAffine |
CurvePwAffine.add(CurvePwAffine curve,
Num dy) |
Returns a copy of this curve shifted vertically by
dy . |
static MaxServiceCurve |
CurvePwAffine.add(MaxServiceCurve max_service_curve_1,
Num dy) |
|
static LinearSegment |
LinearSegment.add(LinearSegment s1,
LinearSegment s2,
Num x,
boolean leftopen) |
Helper creating a new segment starting at x that is the sum of the given
getSegment.
|
ServiceCurve |
CurvePwAffine.createDelayedInfiniteBurst(Num delay) |
|
MaxServiceCurve |
CurvePwAffine.createDelayedInfiniteBurstMSC(Num delay) |
|
CurvePwAffine |
CurvePwAffine.createHorizontal(Num y) |
|
static LinearSegment |
LinearSegment.createLinearSegment(Num x,
Num y,
Num grad,
boolean leftopen) |
|
ArrivalCurve |
CurvePwAffine.createPeakArrivalRate(Num rate) |
|
ServiceCurve |
CurvePwAffine.createRateLatency(Num rate,
Num latency) |
|
MaxServiceCurve |
CurvePwAffine.createRateLatencyMSC(Num rate,
Num latency) |
|
ArrivalCurve |
CurvePwAffine.createTokenBucket(Num rate,
Num burst) |
|
Num |
Curve.f(Num x) |
|
Num |
LinearSegment.f(Num x) |
|
Num |
Curve.f_inv(Num y) |
|
Num |
Curve.f_inv(Num y,
boolean rightmost) |
|
Num |
Curve.fLimitRight(Num x) |
|
Num |
Curve.getGradientLimitRight(Num x) |
|
int |
Curve.getSegmentDefining(Num x) |
|
boolean |
Curve.isConcaveIn(Num a,
Num b) |
|
boolean |
Curve.isConvexIn(Num a,
Num b) |
|
static LinearSegment |
LinearSegment.max(LinearSegment s1,
LinearSegment s2,
Num x,
boolean leftopen,
boolean crossed) |
Helper creating a new segment starting at x that is the maximum of the given
segments.
|
static LinearSegment |
LinearSegment.min(LinearSegment s1,
LinearSegment s2,
Num x,
boolean leftopen,
boolean crossed) |
Helper creating a new segment starting at x that is the minimum of the given
getSegment.
|
void |
LinearSegment.setGrad(Num grad) |
|
void |
LinearSegment.setX(Num x) |
|
void |
LinearSegment.setY(Num y) |
|
static CurvePwAffine |
CurvePwAffine.shiftLeftClipping(CurvePwAffine curve,
Num dx) |
Returns a copy of this curve that is shifted to the left by
dx ,
i.e. |
static CurvePwAffine |
CurvePwAffine.shiftRight(CurvePwAffine curve,
Num dx) |
Returns a copy of this curve that is shifted to the right by
dx ,
i.e. |
static LinearSegment |
LinearSegment.sub(LinearSegment s1,
LinearSegment s2,
Num x,
boolean leftopen) |
Helper creating a new segment starting at x that is the difference between
the given getSegment.
|
Modifier and Type | Field | Description |
---|---|---|
protected Num |
LinearSegment_DNC.grad |
The gradient of the linear segment
|
protected Num |
LinearSegment_DNC.x |
The x-coordinate of the linear segment's starting point.
|
protected Num |
LinearSegment_DNC.y |
The y-coordinate of the linear segment's starting point.
|
Modifier and Type | Method | Description |
---|---|---|
Num |
Curve_DNC.f(Num x) |
Returns the function value at x-coordinate
x , if
x>=0 , and NaN if not. |
Num |
LinearSegment_DNC.f(Num x) |
Returns the function value of this linear segment at the given x-coordinate.
|
Num |
Curve_DNC.f_inv(Num y) |
Returns the smallest x value at which the function value is equal to
y . |
Num |
Curve_DNC.f_inv(Num y,
boolean rightmost) |
Returns the x value at which the function value is equal to
y . |
Num |
Curve_DNC.fLimitRight(Num x) |
Returns the limit to the right of the function value at x-coordinate
x , if x>=0 , and NaN if not. |
Num |
Curve_DNC.getBurst() |
|
Num |
LinearSegment_DNC.getGrad() |
|
Num |
Curve_DNC.getGradientLimitRight(Num x) |
Returns the gradient to the right of the function value at x-coordinate
x , if x>=0 , and NaN if not. |
Num |
Curve_DNC.getLatency() |
Returns the x-coordinate of the inflection point after which the function
values are greater than zero.
|
Num |
Curve_DNC.getUltAffineRate() |
Returns the gradient of the last segment.
|
Num |
LinearSegment_DNC.getX() |
|
Num |
LinearSegment_DNC.getXIntersectionWith(LinearSegment other) |
Returns the x-coordinate at which a co-linear line through this segment
intersects a co-linear line through the segment
other . |
Num |
LinearSegment_DNC.getY() |
Modifier and Type | Method | Description |
---|---|---|
ServiceCurve_DNC |
Curve_DNC.createDelayedInfiniteBurst(Num delay) |
|
MaxServiceCurve_DNC |
Curve_DNC.createDelayedInfiniteBurstMSC(Num delay) |
|
Curve_DNC |
Curve_DNC.createHorizontal(Num y) |
Creates a horizontal curve.
|
ArrivalCurve_DNC |
Curve_DNC.createPeakArrivalRate(Num rate) |
|
ServiceCurve_DNC |
Curve_DNC.createRateLatency(Num rate,
Num latency) |
|
MaxServiceCurve_DNC |
Curve_DNC.createRateLatencyMSC(Num rate,
Num latency) |
|
ArrivalCurve_DNC |
Curve_DNC.createTokenBucket(Num rate,
Num burst) |
|
Num |
Curve_DNC.f(Num x) |
Returns the function value at x-coordinate
x , if
x>=0 , and NaN if not. |
Num |
LinearSegment_DNC.f(Num x) |
Returns the function value of this linear segment at the given x-coordinate.
|
Num |
Curve_DNC.f_inv(Num y) |
Returns the smallest x value at which the function value is equal to
y . |
Num |
Curve_DNC.f_inv(Num y,
boolean rightmost) |
Returns the x value at which the function value is equal to
y . |
Num |
Curve_DNC.fLimitRight(Num x) |
Returns the limit to the right of the function value at x-coordinate
x , if x>=0 , and NaN if not. |
Num |
Curve_DNC.getGradientLimitRight(Num x) |
Returns the gradient to the right of the function value at x-coordinate
x , if x>=0 , and NaN if not. |
int |
Curve_DNC.getSegmentDefining(Num x) |
Returns the number of the segment that defines the function value at
x-coordinate
x . |
private int |
Curve_DNC.getSegmentFirstAtValue(Num y) |
Returns the first segment at which the function reaches the value
y . |
int |
Curve_DNC.getSegmentLimitRight(Num x) |
Returns the number of the segment that defines the value of the function when
computing the limit to the right of the function at x-coordinate
x . |
boolean |
Curve_DNC.isConcaveIn(Num a,
Num b) |
Tests whether the curve is concave in [a,b].
|
boolean |
Curve_DNC.isConvexIn(Num a,
Num b) |
Tests whether the curve is convex in [a,b].
|
private void |
Curve_DNC.makeDelayedInfiniteBurst(Curve_DNC c_dnc,
Num delay) |
|
private void |
Curve_DNC.makeHorizontal(Curve_DNC c_dnc,
Num y) |
|
private void |
Curve_DNC.makePeakRate(Curve_DNC c_dnc,
Num rate) |
|
private void |
Curve_DNC.makeRateLatency(Curve_DNC c_dnc,
Num rate,
Num latency) |
|
private void |
Curve_DNC.makeTokenBucket(Curve_DNC c_dnc,
Num rate,
Num burst) |
|
void |
LinearSegment_DNC.setGrad(Num grad) |
|
void |
LinearSegment_DNC.setX(Num x) |
|
void |
LinearSegment_DNC.setY(Num y) |
Constructor | Description |
---|---|
LinearSegment_DNC(Num x,
Num y,
Num grad,
boolean leftopen) |
A convenient constructor.
|
Modifier and Type | Method | Description |
---|---|---|
Num |
Curve_MPARTC_PwAffine.f(Num x) |
|
Num |
LinearSegment_MPARTC_PwAffine.f(Num x) |
|
Num |
Curve_MPARTC_PwAffine.f_inv(Num y) |
|
Num |
Curve_MPARTC_PwAffine.f_inv(Num y,
boolean rightmost) |
|
Num |
Curve_MPARTC_PwAffine.fLimitRight(Num x) |
|
Num |
Curve_MPARTC_PwAffine.getBurst() |
|
Num |
LinearSegment_MPARTC_PwAffine.getGrad() |
|
Num |
Curve_MPARTC_PwAffine.getGradientLimitRight(Num x) |
|
Num |
Curve_MPARTC_PwAffine.getLatency() |
|
Num |
Curve_MPARTC_PwAffine.getTB_Burst() |
|
Num |
Curve_MPARTC_PwAffine.getUltAffineRate() |
|
Num |
LinearSegment_MPARTC_PwAffine.getX() |
|
Num |
LinearSegment_MPARTC_PwAffine.getXIntersectionWith(LinearSegment other) |
|
Num |
LinearSegment_MPARTC_PwAffine.getY() |
Modifier and Type | Method | Description |
---|---|---|
ServiceCurve_MPARTC_PwAffine |
Curve_MPARTC_PwAffine.createDelayedInfiniteBurst(Num delay) |
|
MaxServiceCurve_MPARTC_PwAffine |
Curve_MPARTC_PwAffine.createDelayedInfiniteBurstMSC(Num delay) |
|
Curve_MPARTC_PwAffine |
Curve_MPARTC_PwAffine.createHorizontal(Num y) |
Creates a horizontal curve.
|
ArrivalCurve_MPARTC_PwAffine |
Curve_MPARTC_PwAffine.createPeakArrivalRate(Num rate) |
|
ServiceCurve_MPARTC_PwAffine |
Curve_MPARTC_PwAffine.createRateLatency(Num rate,
Num latency) |
|
MaxServiceCurve_MPARTC_PwAffine |
Curve_MPARTC_PwAffine.createRateLatencyMSC(Num rate,
Num latency) |
|
ArrivalCurve_MPARTC_PwAffine |
Curve_MPARTC_PwAffine.createTokenBucket(Num rate,
Num burst) |
|
Num |
Curve_MPARTC_PwAffine.f(Num x) |
|
Num |
LinearSegment_MPARTC_PwAffine.f(Num x) |
|
Num |
Curve_MPARTC_PwAffine.f_inv(Num y) |
|
Num |
Curve_MPARTC_PwAffine.f_inv(Num y,
boolean rightmost) |
|
Num |
Curve_MPARTC_PwAffine.fLimitRight(Num x) |
|
Num |
Curve_MPARTC_PwAffine.getGradientLimitRight(Num x) |
|
int |
Curve_MPARTC_PwAffine.getSegmentDefining(Num x) |
Attention: We assume that RTC curves are left-continuous as we cannot make
this explicit.
|
int |
Curve_MPARTC_PwAffine.getSegmentLimitRight(Num x) |
|
boolean |
Curve_MPARTC_PwAffine.isConcaveIn(Num a,
Num b) |
Tests whether the curve is concave in [a,b].
|
boolean |
Curve_MPARTC_PwAffine.isConvexIn(Num a,
Num b) |
|
void |
LinearSegment_MPARTC_PwAffine.setGrad(Num grad) |
|
void |
LinearSegment_MPARTC_PwAffine.setX(Num x) |
|
void |
LinearSegment_MPARTC_PwAffine.setY(Num y) |
Modifier and Type | Field | Description |
---|---|---|
protected Num |
AnalysisResults.backlog_bound |
|
protected Num |
AnalysisResults.delay_bound |
Modifier and Type | Method | Description |
---|---|---|
Num |
AbstractAnalysis.getBacklogBound() |
Returns the backlog bound of the analysis.
|
Num |
AnalysisResults.getBacklogBound() |
|
Num |
AbstractAnalysis.getDelayBound() |
Returns the delay bound of the analysis.
|
Num |
AnalysisResults.getDelayBound() |
Modifier and Type | Method | Description |
---|---|---|
protected void |
AnalysisResults.setBacklogBound(Num backlog_bound) |
|
protected void |
AnalysisResults.setDelayBound(Num delay_bound) |
Constructor | Description |
---|---|
AnalysisResults(Num delay_bound,
Num backlog_bound,
java.util.Map<Server,java.util.Set<ArrivalCurve>> map__server__alphas) |
Modifier and Type | Field | Description |
---|---|---|
protected java.util.Map<Server,java.util.Set<Num>> |
TotalFlowResults.map__server__B_server |
|
protected java.util.Map<Server,java.util.Set<Num>> |
TotalFlowResults.map__server__D_server |
Modifier and Type | Method | Description |
---|---|---|
Pair<Num> |
TotalFlowAnalysis.deriveBoundsAtServer(Server server) |
|
java.util.Map<Server,java.util.Set<Num>> |
TotalFlowAnalysis.getServerBacklogBoundMap() |
|
java.util.Map<Server,java.util.Set<Num>> |
TotalFlowAnalysis.getServerDelayBoundMap() |
Modifier and Type | Method | Description |
---|---|---|
protected void |
PmooResults.setBacklogBound(Num backlog_bound) |
|
protected void |
SeparateFlowResults.setBacklogBound(Num backlog_bound) |
|
protected void |
TotalFlowResults.setBacklogBound(Num backlog_bound) |
|
protected void |
PmooResults.setDelayBound(Num delay_bound) |
|
protected void |
SeparateFlowResults.setDelayBound(Num delay_bound) |
|
protected void |
TotalFlowResults.setDelayBound(Num delay_bound) |
Constructor | Description |
---|---|
PmooResults(Num delay_bound,
Num backlog_bound,
java.util.Set<ServiceCurve> betas_e2e,
java.util.Map<Server,java.util.Set<ArrivalCurve>> map__server__alphas) |
|
SeparateFlowResults(Num delay_bound,
Num backlog_bound,
java.util.Set<ServiceCurve> betas_e2e,
java.util.Map<Server,java.util.Set<ServiceCurve>> map__server__betas_lo,
java.util.Map<Server,java.util.Set<ArrivalCurve>> map__server__alphas) |
|
TotalFlowResults(Num delay_bound,
java.util.Map<Server,java.util.Set<Num>> map__server__D_server,
Num backlog_bound,
java.util.Map<Server,java.util.Set<Num>> map__server__B_server,
java.util.Map<Server,java.util.Set<ArrivalCurve>> map__server__alphas) |
Constructor | Description |
---|---|
TotalFlowResults(Num delay_bound,
java.util.Map<Server,java.util.Set<Num>> map__server__D_server,
Num backlog_bound,
java.util.Map<Server,java.util.Set<Num>> map__server__B_server,
java.util.Map<Server,java.util.Set<ArrivalCurve>> map__server__alphas) |
Modifier and Type | Method | Description |
---|---|---|
static Num |
Bound.backlog(ArrivalCurve arrival_curve,
ServiceCurve service_curve) |
|
static Num |
Bound.delayARB(ArrivalCurve arrival_curve,
ServiceCurve service_curve) |
|
static Num |
Bound.delayFIFO(ArrivalCurve arrival_curve,
ServiceCurve service_curve) |
|
static Num |
Backlog.derive(ArrivalCurve arrival_curve,
ServiceCurve service_curve) |
|
static Num |
Delay.deriveARB(ArrivalCurve arrival_curve,
ServiceCurve service_curve) |
|
static Num |
Delay.deriveFIFO(ArrivalCurve arrival_curve,
ServiceCurve service_curve) |
|
private static Num |
Delay.deriveForSpecialCurves(ArrivalCurve arrival_curve,
ServiceCurve service_curve) |
Modifier and Type | Field | Description |
---|---|---|
static Num |
Num.NaN |
|
static Num |
Num.NEGATIVE_INFINITY |
|
static Num |
Num.POSITIVE_INFINITY |
Modifier and Type | Method | Description |
---|---|---|
Num |
Num.abs(Num num) |
|
Num |
Num.add(Num num1,
Num num2) |
|
Num |
Num.copy() |
|
Num |
Num.create(double value) |
|
Num |
Num.create(int num) |
|
Num |
Num.create(int num,
int den) |
|
Num |
Num.create(java.lang.String num_str) |
|
Num |
Num.createEpsilon() |
|
Num |
Num.createNaN() |
|
Num |
Num.createNegativeInfinity() |
|
Num |
Num.createPositiveInfinity() |
|
Num |
Num.createZero() |
|
Num |
Num.diff(Num num1,
Num num2) |
|
Num |
Num.div(Num num1,
Num num2) |
|
Num |
Num.getEpsilon() |
|
static Num |
Num.getFactory() |
|
Num |
Num.getNaN() |
|
Num |
Num.getNegativeInfinity() |
|
Num |
Num.getPositiveInfinity() |
|
static Num |
Num.getUtils() |
|
Num |
Num.getZero() |
|
Num |
Num.max(Num num1,
Num num2) |
|
Num |
Num.min(Num num1,
Num num2) |
|
Num |
Num.mult(Num num1,
Num num2) |
|
Num |
Num.negate(Num num) |
|
Num |
Num.sub(Num num1,
Num num2) |
Modifier and Type | Method | Description |
---|---|---|
Num |
Num.abs(Num num) |
|
Num |
Num.add(Num num1,
Num num2) |
|
Num |
Num.diff(Num num1,
Num num2) |
|
Num |
Num.div(Num num1,
Num num2) |
|
boolean |
Num.geq(Num num) |
|
boolean |
Num.gt(Num num) |
|
boolean |
Num.isFinite(Num num) |
|
boolean |
Num.isInfinite(Num num) |
|
boolean |
Num.isNaN(Num num) |
|
boolean |
Num.leq(Num num) |
|
boolean |
Num.lt(Num num) |
|
Num |
Num.max(Num num1,
Num num2) |
|
Num |
Num.min(Num num1,
Num num2) |
|
Num |
Num.mult(Num num1,
Num num2) |
|
Num |
Num.negate(Num num) |
|
Num |
Num.sub(Num num1,
Num num2) |
Modifier and Type | Class | Description |
---|---|---|
class |
RationalBigInt |
Wrapper class around org.apache.commons.math3.BigFraction.BigFraction
introducing special values like positive / negative infinity and NaN as well
as operators like min, max, ==, >, >=, <, and <= that are not
part of BigFraction but needed by the network calculator.
|
class |
RationalInt |
Wrapper class around org.apache.commons.math3.fraction.Fraction introducing
special values like positive / negative infinity and NaN as well as operators
like min, max, ==, >, >=, <, and <= that are not part of Fraction
but needed by the network calculator.
|
class |
RealDoublePrecision |
|
class |
RealSinglePrecision |
Modifier and Type | Field | Description |
---|---|---|
private Num |
RationalBigInt.EPSILON |
|
private Num |
RationalInt.EPSILON |
|
private Num |
RealDoublePrecision.EPSILON |
|
private Num |
RealSinglePrecision.EPSILON |
|
private Num |
RationalBigInt.NaN |
|
private Num |
RationalInt.NaN |
|
private Num |
RealDoublePrecision.NaN |
|
private Num |
RealSinglePrecision.NaN |
|
private Num |
RationalBigInt.NEGATIVE_INFINITY |
|
private Num |
RationalInt.NEGATIVE_INFINITY |
|
private Num |
RealDoublePrecision.NEGATIVE_INFINITY |
|
private Num |
RealSinglePrecision.NEGATIVE_INFINITY |
|
private Num |
RationalBigInt.POSITIVE_INFINITY |
|
private Num |
RationalInt.POSITIVE_INFINITY |
|
private Num |
RealDoublePrecision.POSITIVE_INFINITY |
|
private Num |
RealSinglePrecision.POSITIVE_INFINITY |
|
private Num |
RationalBigInt.ZERO |
|
private Num |
RationalInt.ZERO |
|
private Num |
RealDoublePrecision.ZERO |
|
private Num |
RealSinglePrecision.ZERO |
Modifier and Type | Method | Description |
---|---|---|
Num |
RationalBigInt.abs(Num num) |
|
Num |
RationalInt.abs(Num num) |
|
Num |
RealDoublePrecision.abs(Num num) |
|
Num |
RealSinglePrecision.abs(Num num) |
|
Num |
RationalBigInt.add(Num num1,
Num num2) |
|
Num |
RationalInt.add(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.add(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.add(Num num1,
Num num2) |
|
Num |
RationalBigInt.copy() |
|
Num |
RationalInt.copy() |
|
Num |
RealDoublePrecision.copy() |
|
Num |
RealSinglePrecision.copy() |
|
Num |
RationalBigInt.create(double value) |
|
Num |
RationalBigInt.create(int num) |
|
Num |
RationalBigInt.create(int num,
int den) |
|
Num |
RationalBigInt.create(java.lang.String num_str) |
|
Num |
RationalInt.create(double value) |
|
Num |
RationalInt.create(int num) |
|
Num |
RationalInt.create(int num,
int den) |
|
Num |
RationalInt.create(java.lang.String num_str) |
|
Num |
RealDoublePrecision.create(double value) |
|
Num |
RealDoublePrecision.create(int num) |
|
Num |
RealDoublePrecision.create(int num,
int den) |
|
Num |
RealDoublePrecision.create(java.lang.String num_str) |
|
Num |
RealSinglePrecision.create(double value) |
|
Num |
RealSinglePrecision.create(int num) |
|
Num |
RealSinglePrecision.create(int num,
int den) |
|
Num |
RealSinglePrecision.create(java.lang.String num_str) |
|
Num |
RationalBigInt.createEpsilon() |
|
Num |
RationalInt.createEpsilon() |
|
Num |
RealDoublePrecision.createEpsilon() |
|
Num |
RealSinglePrecision.createEpsilon() |
|
Num |
RationalBigInt.createNaN() |
|
Num |
RationalInt.createNaN() |
|
Num |
RealDoublePrecision.createNaN() |
|
Num |
RealSinglePrecision.createNaN() |
|
Num |
RationalBigInt.createNegativeInfinity() |
|
Num |
RationalInt.createNegativeInfinity() |
|
Num |
RealDoublePrecision.createNegativeInfinity() |
|
Num |
RealSinglePrecision.createNegativeInfinity() |
|
Num |
RationalBigInt.createPositiveInfinity() |
|
Num |
RationalInt.createPositiveInfinity() |
|
Num |
RealDoublePrecision.createPositiveInfinity() |
|
Num |
RealSinglePrecision.createPositiveInfinity() |
|
Num |
RationalBigInt.createZero() |
|
Num |
RationalInt.createZero() |
|
Num |
RealDoublePrecision.createZero() |
|
Num |
RealSinglePrecision.createZero() |
|
Num |
RationalBigInt.diff(Num num1,
Num num2) |
|
Num |
RationalInt.diff(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.diff(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.diff(Num num1,
Num num2) |
|
Num |
RationalBigInt.div(Num num1,
Num num2) |
|
Num |
RationalInt.div(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.div(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.div(Num num1,
Num num2) |
|
Num |
RationalBigInt.getEpsilon() |
|
Num |
RationalInt.getEpsilon() |
|
Num |
RealDoublePrecision.getEpsilon() |
|
Num |
RealSinglePrecision.getEpsilon() |
|
Num |
RationalBigInt.getNaN() |
|
Num |
RationalInt.getNaN() |
|
Num |
RealDoublePrecision.getNaN() |
|
Num |
RealSinglePrecision.getNaN() |
|
Num |
RationalBigInt.getNegativeInfinity() |
|
Num |
RationalInt.getNegativeInfinity() |
|
Num |
RealDoublePrecision.getNegativeInfinity() |
|
Num |
RealSinglePrecision.getNegativeInfinity() |
|
Num |
RationalBigInt.getPositiveInfinity() |
|
Num |
RationalInt.getPositiveInfinity() |
|
Num |
RealDoublePrecision.getPositiveInfinity() |
|
Num |
RealSinglePrecision.getPositiveInfinity() |
|
Num |
RationalBigInt.getZero() |
|
Num |
RationalInt.getZero() |
|
Num |
RealDoublePrecision.getZero() |
|
Num |
RealSinglePrecision.getZero() |
|
Num |
RationalBigInt.max(Num num1,
Num num2) |
|
Num |
RationalInt.max(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.max(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.max(Num num1,
Num num2) |
|
Num |
RationalBigInt.min(Num num1,
Num num2) |
|
Num |
RationalInt.min(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.min(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.min(Num num1,
Num num2) |
|
Num |
RationalBigInt.mult(Num num1,
Num num2) |
|
Num |
RationalInt.mult(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.mult(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.mult(Num num1,
Num num2) |
|
Num |
RationalBigInt.negate(Num num) |
|
Num |
RationalInt.negate(Num num) |
|
Num |
RealDoublePrecision.negate(Num num) |
|
Num |
RealSinglePrecision.negate(Num num) |
|
Num |
RationalBigInt.sub(Num num1,
Num num2) |
|
Num |
RationalInt.sub(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.sub(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.sub(Num num1,
Num num2) |
Modifier and Type | Method | Description |
---|---|---|
Num |
RationalBigInt.abs(Num num) |
|
Num |
RationalInt.abs(Num num) |
|
Num |
RealDoublePrecision.abs(Num num) |
|
Num |
RealSinglePrecision.abs(Num num) |
|
Num |
RationalBigInt.add(Num num1,
Num num2) |
|
Num |
RationalInt.add(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.add(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.add(Num num1,
Num num2) |
|
Num |
RationalBigInt.diff(Num num1,
Num num2) |
|
Num |
RationalInt.diff(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.diff(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.diff(Num num1,
Num num2) |
|
Num |
RationalBigInt.div(Num num1,
Num num2) |
|
Num |
RationalInt.div(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.div(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.div(Num num1,
Num num2) |
|
boolean |
RationalBigInt.geq(Num num) |
|
boolean |
RationalInt.geq(Num num) |
|
boolean |
RealDoublePrecision.geq(Num num) |
|
boolean |
RealSinglePrecision.geq(Num num) |
|
boolean |
RationalBigInt.gt(Num num) |
|
boolean |
RationalInt.gt(Num num) |
|
boolean |
RealDoublePrecision.gt(Num num) |
|
boolean |
RealSinglePrecision.gt(Num num) |
|
boolean |
RationalBigInt.isFinite(Num num) |
|
boolean |
RationalInt.isFinite(Num num) |
|
boolean |
RealDoublePrecision.isFinite(Num num) |
|
boolean |
RealSinglePrecision.isFinite(Num num) |
|
boolean |
RationalBigInt.isInfinite(Num num) |
|
boolean |
RationalInt.isInfinite(Num num) |
|
boolean |
RealDoublePrecision.isInfinite(Num num) |
|
boolean |
RealSinglePrecision.isInfinite(Num num) |
|
boolean |
RationalBigInt.isNaN(Num num) |
|
boolean |
RationalInt.isNaN(Num num) |
|
boolean |
RealDoublePrecision.isNaN(Num num) |
|
boolean |
RealSinglePrecision.isNaN(Num num) |
|
boolean |
RationalBigInt.leq(Num num) |
|
boolean |
RationalInt.leq(Num num) |
|
boolean |
RealDoublePrecision.leq(Num num) |
|
boolean |
RealSinglePrecision.leq(Num num) |
|
boolean |
RationalBigInt.lt(Num num) |
|
boolean |
RationalInt.lt(Num num) |
|
boolean |
RealDoublePrecision.lt(Num num) |
|
boolean |
RealSinglePrecision.lt(Num num) |
|
Num |
RationalBigInt.max(Num num1,
Num num2) |
|
Num |
RationalInt.max(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.max(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.max(Num num1,
Num num2) |
|
Num |
RationalBigInt.min(Num num1,
Num num2) |
|
Num |
RationalInt.min(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.min(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.min(Num num1,
Num num2) |
|
Num |
RationalBigInt.mult(Num num1,
Num num2) |
|
Num |
RationalInt.mult(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.mult(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.mult(Num num1,
Num num2) |
|
Num |
RationalBigInt.negate(Num num) |
|
Num |
RationalInt.negate(Num num) |
|
Num |
RealDoublePrecision.negate(Num num) |
|
Num |
RealSinglePrecision.negate(Num num) |
|
Num |
RationalBigInt.sub(Num num1,
Num num2) |
|
Num |
RationalInt.sub(Num num1,
Num num2) |
|
Num |
RealDoublePrecision.sub(Num num1,
Num num2) |
|
Num |
RealSinglePrecision.sub(Num num1,
Num num2) |
Modifier and Type | Class | Description |
---|---|---|
class |
NaN |
|
class |
NegativeInfinity |
|
class |
PositiveInfinity |
Modifier and Type | Method | Description |
---|---|---|
Num |
NaN.abs(Num num) |
|
Num |
NegativeInfinity.abs(Num num) |
|
Num |
PositiveInfinity.abs(Num num) |
|
Num |
NaN.add(Num num1,
Num num2) |
|
Num |
NegativeInfinity.add(Num num1,
Num num2) |
|
Num |
PositiveInfinity.add(Num num1,
Num num2) |
|
Num |
NaN.copy() |
|
Num |
NegativeInfinity.copy() |
|
Num |
PositiveInfinity.copy() |
|
Num |
NaN.create(double value) |
|
Num |
NaN.create(int num) |
|
Num |
NaN.create(int num,
int den) |
|
Num |
NaN.create(java.lang.String num_str) |
|
Num |
NegativeInfinity.create(double value) |
|
Num |
NegativeInfinity.create(int num) |
|
Num |
NegativeInfinity.create(int num,
int den) |
|
Num |
NegativeInfinity.create(java.lang.String num_str) |
|
Num |
PositiveInfinity.create(double value) |
|
Num |
PositiveInfinity.create(int num) |
|
Num |
PositiveInfinity.create(int num,
int den) |
|
Num |
PositiveInfinity.create(java.lang.String num_str) |
|
Num |
NaN.createEpsilon() |
|
Num |
NegativeInfinity.createEpsilon() |
|
Num |
PositiveInfinity.createEpsilon() |
|
Num |
NaN.createNaN() |
|
Num |
NegativeInfinity.createNaN() |
|
Num |
PositiveInfinity.createNaN() |
|
Num |
NaN.createNegativeInfinity() |
|
Num |
NegativeInfinity.createNegativeInfinity() |
|
Num |
PositiveInfinity.createNegativeInfinity() |
|
Num |
NaN.createPositiveInfinity() |
|
Num |
NegativeInfinity.createPositiveInfinity() |
|
Num |
PositiveInfinity.createPositiveInfinity() |
|
Num |
NaN.createZero() |
|
Num |
NegativeInfinity.createZero() |
|
Num |
PositiveInfinity.createZero() |
|
Num |
NaN.diff(Num num1,
Num num2) |
|
Num |
NegativeInfinity.diff(Num num1,
Num num2) |
|
Num |
PositiveInfinity.diff(Num num1,
Num num2) |
|
Num |
NaN.div(Num num1,
Num num2) |
|
Num |
NegativeInfinity.div(Num num1,
Num num2) |
|
Num |
PositiveInfinity.div(Num num1,
Num num2) |
|
Num |
NaN.getEpsilon() |
|
Num |
NegativeInfinity.getEpsilon() |
|
Num |
PositiveInfinity.getEpsilon() |
|
Num |
NaN.getNaN() |
|
Num |
NegativeInfinity.getNaN() |
|
Num |
PositiveInfinity.getNaN() |
|
Num |
NaN.getNegativeInfinity() |
|
Num |
NegativeInfinity.getNegativeInfinity() |
|
Num |
PositiveInfinity.getNegativeInfinity() |
|
Num |
NaN.getPositiveInfinity() |
|
Num |
NegativeInfinity.getPositiveInfinity() |
|
Num |
PositiveInfinity.getPositiveInfinity() |
|
Num |
NaN.getZero() |
|
Num |
NegativeInfinity.getZero() |
|
Num |
PositiveInfinity.getZero() |
|
Num |
NaN.max(Num num1,
Num num2) |
|
Num |
NegativeInfinity.max(Num num1,
Num num2) |
|
Num |
PositiveInfinity.max(Num num1,
Num num2) |
|
Num |
NaN.min(Num num1,
Num num2) |
|
Num |
NegativeInfinity.min(Num num1,
Num num2) |
|
Num |
PositiveInfinity.min(Num num1,
Num num2) |
|
Num |
NaN.mult(Num num1,
Num num2) |
|
Num |
NegativeInfinity.mult(Num num1,
Num num2) |
|
Num |
PositiveInfinity.mult(Num num1,
Num num2) |
|
Num |
NaN.negate(Num num) |
|
Num |
NegativeInfinity.negate(Num num) |
|
Num |
PositiveInfinity.negate(Num num) |
|
Num |
NaN.sub(Num num1,
Num num2) |
|
Num |
NegativeInfinity.sub(Num num1,
Num num2) |
|
Num |
PositiveInfinity.sub(Num num1,
Num num2) |
Modifier and Type | Method | Description |
---|---|---|
Num |
NaN.abs(Num num) |
|
Num |
NegativeInfinity.abs(Num num) |
|
Num |
PositiveInfinity.abs(Num num) |
|
Num |
NaN.add(Num num1,
Num num2) |
|
Num |
NegativeInfinity.add(Num num1,
Num num2) |
|
Num |
PositiveInfinity.add(Num num1,
Num num2) |
|
Num |
NaN.diff(Num num1,
Num num2) |
|
Num |
NegativeInfinity.diff(Num num1,
Num num2) |
|
Num |
PositiveInfinity.diff(Num num1,
Num num2) |
|
Num |
NaN.div(Num num1,
Num num2) |
|
Num |
NegativeInfinity.div(Num num1,
Num num2) |
|
Num |
PositiveInfinity.div(Num num1,
Num num2) |
|
boolean |
NaN.geq(Num num) |
|
boolean |
NegativeInfinity.geq(Num num) |
|
boolean |
PositiveInfinity.geq(Num num) |
|
boolean |
NaN.gt(Num num) |
|
boolean |
NegativeInfinity.gt(Num num) |
|
boolean |
PositiveInfinity.gt(Num num) |
|
boolean |
NaN.isFinite(Num num) |
|
boolean |
NegativeInfinity.isFinite(Num num) |
|
boolean |
PositiveInfinity.isFinite(Num num) |
|
boolean |
NaN.isInfinite(Num num) |
|
boolean |
NegativeInfinity.isInfinite(Num num) |
|
boolean |
PositiveInfinity.isInfinite(Num num) |
|
boolean |
NaN.isNaN(Num num) |
|
boolean |
NegativeInfinity.isNaN(Num num) |
|
boolean |
PositiveInfinity.isNaN(Num num) |
|
boolean |
NaN.leq(Num num) |
|
boolean |
NegativeInfinity.leq(Num num) |
|
boolean |
PositiveInfinity.leq(Num num) |
|
boolean |
NaN.lt(Num num) |
|
boolean |
NegativeInfinity.lt(Num num) |
|
boolean |
PositiveInfinity.lt(Num num) |
|
Num |
NaN.max(Num num1,
Num num2) |
|
Num |
NegativeInfinity.max(Num num1,
Num num2) |
|
Num |
PositiveInfinity.max(Num num1,
Num num2) |
|
Num |
NaN.min(Num num1,
Num num2) |
|
Num |
NegativeInfinity.min(Num num1,
Num num2) |
|
Num |
PositiveInfinity.min(Num num1,
Num num2) |
|
Num |
NaN.mult(Num num1,
Num num2) |
|
Num |
NegativeInfinity.mult(Num num1,
Num num2) |
|
Num |
PositiveInfinity.mult(Num num1,
Num num2) |
|
Num |
NaN.negate(Num num) |
|
Num |
NegativeInfinity.negate(Num num) |
|
Num |
PositiveInfinity.negate(Num num) |
|
Num |
NaN.sub(Num num1,
Num num2) |
|
Num |
NegativeInfinity.sub(Num num1,
Num num2) |
|
Num |
PositiveInfinity.sub(Num num1,
Num num2) |